This paper investigates the influences of standard numerical discretizations on hitting probabilities for linear stochastic parabolic system driven by space-time white noises. We establish lower and upper bounds for hitting probabilities of the associated numerical solutions of both temporal and spatial semi-discretizations in terms of Bessel-Riesz capacity and Hausdorff measure, respectively. Moreover, the critical dimensions of both temporal and spatial semi-discretizations turn out to be half of those of the exact solution. This reveals that for a large class of Borel sets $A$, the probability of the event that the paths of the numerical solution hit $A$ cannot converge to that of the exact solution.
翻译:本文调查标准数字分解对由时空白噪音驱动的线性随机抛物线系统概率的打击标准数字分解的影响。 我们分别从贝塞尔-里什兹容量和豪斯多夫测量中,为打击相关时间和空间半分解数字解决方案的概率设定了下限和上限。 此外,时间和空间半分解的关键维度被证明是精确解决方案的关键维度的一半。 这揭示了对于一大类波雷尔人来说,确定$A值,数字解答路径打到$A的概率无法与确切解决方案的概率一致。