We present the design of a motion planning algorithm that ensures safety for an autonomous vehicle. In particular, we consider a multimodal distribution over uncertainties; for example, the uncertain predictions of future trajectories of surrounding vehicles reflect discrete decisions, such as turning or going straight at intersections. We develop a computationally efficient, scenario-based approach that solves the motion planning problem with high confidence given a quantifiable number of samples from the multimodal distribution. Our approach is based on two preprocessing steps, which 1) separate the samples into distinct clusters and 2) compute a bounding polytope for each cluster. Then, we rewrite the motion planning problem approximately as a mixed-integer problem using the polytopes. We demonstrate via simulation on the nuScenes dataset that our approach ensures safety with high probability in the presence of multimodal uncertainties, and is computationally more efficient and less conservative than a conventional scenario approach.
翻译:我们提出了确保自主车辆安全的机动规划算法的设计,特别是,我们考虑多式联运分配方式,而不是不确定因素;例如,对周围车辆未来轨迹的不确定预测反映了互不相连的决定,例如交叉路口转转或直转。我们开发了一种计算高效的、基于情景的方法,根据多式联运分配的样本数量,以高度自信的方式解决机动规划问题。我们的方法基于两个预处理步骤,即1)将样品分为不同的组群,2)对每个组群进行捆绑式的多功能计算。然后,我们用多功能车将运动规划问题大致改写成一个混合整数问题。我们通过对核元数据集进行模拟演示,我们的方法在多模式不确定性存在的情况下非常有可能确保安全,而且计算效率更高,比常规设想方法保守。