Quadrotors are among the most agile flying robots. However, planning time-optimal trajectories at the actuation limit through multiple waypoints remains an open problem. This is crucial for applications such as inspection, delivery, search and rescue, and drone racing. Early works used polynomial trajectory formulations, which do not exploit the full actuator potential because of their inherent smoothness. Recent works resorted to numerical optimization but require waypoints to be allocated as costs or constraints at specific discrete times. However, this time allocation is a priori unknown and renders previous works incapable of producing truly time-optimal trajectories. To generate truly time-optimal trajectories, we propose a solution to the time allocation problem while exploiting the full quadrotor's actuator potential. We achieve this by introducing a formulation of progress along the trajectory, which enables the simultaneous optimization of the time allocation and the trajectory itself. We compare our method against related approaches and validate it in real-world flights in one of the world's largest motion-capture systems, where we outperform human expert drone pilots in a drone-racing task.
翻译:四方是最灵活的飞行机器人之一。 但是,在多个路径点的启动极限上规划最短的时间轨迹仍然是一个尚未解决的问题。 这对诸如检查、交付、搜索和救援以及无人机赛车等应用来说至关重要。 早期工程使用多元轨迹配方, 由于其固有的光滑性, 没有利用全部导体的潜力。 最近的工作采用数字优化, 但在特定的离散时间需要将路标作为成本或限制来分配。 然而, 时间分配是一个先验的未知点, 使得先前的工程无法产生真正最短的时间轨迹。 要产生真正最短的时间轨迹, 我们提出时间分配问题的解决方案, 同时开发完整的二次轨迹的潜能。 我们沿着轨迹推出一个进度配方, 从而能够同时优化时间分配和轨迹本身。 我们比较了我们的方法, 并在世界上最大的运动定位系统中的一个真实世界航班上验证了它。 我们的无人机能比人驾驶的无人机飞行实验。