This paper presents Learning-based Autonomous Guidance with RObustness and Stability guarantees (LAG-ROS), which provides machine learning-based nonlinear motion planners with formal robustness and stability guarantees, by designing a differential Lyapunov function using contraction theory. LAG-ROS utilizes a neural network to model a robust tracking controller independently of a target trajectory, for which we show that the Euclidean distance between the target and controlled trajectories is exponentially bounded linearly in the learning error, even under the existence of bounded external disturbances. We also present a convex optimization approach that minimizes the steady-state bound of the tracking error to construct the robust control law for neural network training. In numerical simulations, it is demonstrated that the proposed method indeed possesses superior properties of robustness and nonlinear stability resulting from contraction theory, whilst retaining the computational efficiency of existing learning-based motion planners.


翻译:本文介绍基于学习的自主指导,并附有强力和稳定性保障(LAG-ROS),通过使用收缩理论设计不同的Lyapunov功能,为基于机械的学习的非线性运动规划者提供正式的稳健性和稳定性保障。 LAG-ROS利用神经网络构建一个独立于目标轨迹的强力跟踪控制器模型,为此,我们表明,即使存在受约束的外部扰动,目标与受控轨迹之间的Eucliidean距离在学习错误中也呈指数性线性界限。 我们还提出了一个螺旋优化方法,最大限度地减少跟踪错误的稳态界限,以构建神经网络培训的强力控制法。 在数字模拟中,可以证明拟议方法确实具有由收缩理论产生的强力和非线性稳定性的超强性特性,同时保留现有基于学习的运动规划者的计算效率。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年6月30日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
7+阅读 · 2020年8月7日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员