Motivated by applications in cloud computing spot markets and selling banner ads on popular websites, we study the online resource allocation problem with "costly buyback". To model this problem, we consider the classic edge-weighted fractional online matching problem with a tweak, where the decision maker can recall (i.e., buyback) any fraction of an offline resource that is pre-allocated to an earlier online vertex; however, by doing so not only the decision maker loses the previously allocated reward (which equates the edge-weight), it also has to pay a non-negative constant factor $f$ of this edge-weight as an extra penalty. Parameterizing the problem by the buyback factor $f$, our main result is obtaining optimal competitive algorithms for all possible values of $f$ through a novel primal-dual family of algorithms. We establish the optimality of our results by obtaining separate lower-bounds for each of small and large buyback factor regimes, and showing how our primal-dual algorithm exactly matches this lower-bound by appropriately tuning a parameter as a function of $f$. We further study lower and upper bounds on the competitive ratio in variants of this model, e.g., single-resource with different demand sizes, or matching with deterministic integral allocations. We show how algorithms in the our family of primal-dual algorithms can obtain the exact optimal competitive ratio in all of these variants -- which in turn demonstrates the power of our algorithmic framework for online resource allocations with costly buyback.


翻译:受云计算网点市场和在广受欢迎的网站上销售横幅广告应用的驱动,我们研究了在线资源分配问题,用“成本回购”来研究这一问题。为了模拟这一问题,我们考虑了典型的边缘加权分数在线匹配问题和tweak 。 在这个问题上,决策者可以回顾(即回购)任何部分的离线资源,并预先分配到更早的在线顶点;然而,通过这样做,决策者不仅失去了先前分配的奖赏(这等于利差比重),而且还必须支付非负数的常数(美元),作为额外的罚款。用回购因数衡量问题,我们的主要结果就是通过新颖的初等分数算法组合,为所有可能值获得最佳竞争性算法(即回购)。我们通过为每个小型和大型回购因数制度分别获得较低幅度的奖赏(这等于优势比重),我们原始回算法如何与这个较低幅度的不变的常数一致,通过适当调整一个比值参数,用回差值来计算,我们的主要算法值(美元)比值比值,我们用这个比值的比值,我们最低的比值,我们更低的算算算算法,我们更低的比值,我们更低的比值是用来显示这个比值,我们最低的比值。 我们进一步的研究。我们用这些比值,用这个比值的比值,我们最低的比值, 显示的比值, 显示的比值,我们用这个比值,我们最低的比值, 显示的比值是用来在最值,我们最差值,我们最值,,我们最值,我们最值,我们最值, 显示我们最值的排序的算值的 显示我们最值的,我们最值的算值的 的比值的比值的比值的, 的算值,我们用在最值,我们最值的,在最值的算值的算法值的比值的比值的比值值的比值的比值,我们的比值的比值,我们在最值的,我们的比值值值值值的比值的比值的比值值值值值值值值值的比值,我们的比值的比值的比值

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月4日
Arxiv
0+阅读 · 2022年11月30日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员