We consider the constrained Linear Inverse Problem (LIP), where a certain atomic norm (like the $\ell_1 $ and the Nuclear norm) is minimized subject to a quadratic constraint. Typically, such cost functions are non-differentiable which makes them not amenable to the fast optimization methods existing in practice. We propose two equivalent reformulations of the constrained LIP with improved convex regularity: (i) a smooth convex minimization problem, and (ii) a strongly convex min-max problem. These problems could be solved by applying existing acceleration based convex optimization methods which provide better \mmode{ O \left( \nicefrac{1}{k^2} \right) } theoretical convergence guarantee. However, to fully exploit the utility of these reformulations, we also provide a novel algorithm, to which we refer as the Fast Linear Inverse Problem Solver (FLIPS), that is tailored to solve the reformulation of the LIP. We demonstrate the performance of FLIPS on the sparse coding problem arising in image processing tasks. In this setting, we observe that FLIPS consistently outperforms the Chambolle-Pock and C-SALSA algorithms--two of the current best methods in the literature.
翻译:我们考虑了限制的线性反问题(LIP ), 将某种原子规范( 如 $\ ell_ 1美元和核规范) 降低到四面限制。 通常, 此类成本功能是不可区分的, 因而不适应实践中存在的快速优化方法 。 我们建议对受限制的LIP 进行两种等效的重新修改, 改进共性 : (一) 顺畅的二次曲线最小化问题, 以及 (二) 强烈的卷轴问题 。 这些问题可以通过应用基于加速的现有convex优化方法来解决, 提供更好的 \ mmode{ O left( nicefrac{1\\\\\\ k}\right) } 理论趋同保证 。 然而, 为了充分利用这些重整方法的效用, 我们还提供了一种新型的算法, 我们称之为快速线性反问题溶剂溶剂(FLIPS), 用来解决LIP 的重整问题。 我们用FLIPS 在图像处理任务中出现的稀少的coding 问题上的表现证明了 FLIPS 。 在此设置中, 我们观察FLIPS 的C- pal- pal- pal- plass- craft- gas- cas- cas- clasmol- class