Weitzman (1979) introduced the Pandora Box problem as a model for sequential search with inspection costs, and gave an elegant index-based policy that attains provably optimal expected payoff. In various scenarios, the searching agent may select an option without making a costly inspection. The variant of the Pandora box problem with non-obligatory inspection has attracted interest from both economics and algorithms researchers. Various simple algorithms have proved suboptimal, with the best known 0.8-approximation algorithm due to Guha et al. (2008). No hardness result for the problem was known. In this work, we show that it is NP-hard to compute an optimal policy for Pandora's problem with nonobligatory inspection. We also give a polynomial-time approximation scheme (PTAS) that computes policies with an expected payoff at least $(1 - \epsilon)$-fraction of the optimal, for arbitrarily small $\epsilon > 0$. On the side, we show the decision version of the problem to be in NP.
翻译:韦茨曼(1979年)引入了潘多拉箱问题作为检查成本连续搜索的模式,并给出了优雅的指数制政策,从而取得了可以想象的最佳预期报酬。在各种情况下,搜索代理商可以选择一种选择,而不必花费昂贵的检查。潘多拉箱问题的变式引起了经济学和算法研究人员的兴趣。各种简单的算法已证明不尽如人意,因为Guha等人(2008年)采用了最著名的0.8和0.8调和算法。对于问题没有得出硬性结果。在这项工作中,我们表明很难用非强制检查来计算潘多拉问题的最佳政策。我们还给出了一个多平衡时间近似方案(PTAS ), 将政策与预期的至少1- \ \ \ \ exsilon $ 的优减率( $- epsilon) 相匹配, 因为任意小的 $\ epsilon > 0。另一方面,我们展示了问题的决定版本。