Federated Learning (FL) is designed as a decentralized, privacy-preserving machine learning paradigm that enables multiple clients to collaboratively train a model without sharing their data. In real-world scenarios, however, clients often have heterogeneous computational resources and hold non-independent and identically distributed data (non-IID), which poses significant challenges during training. Personalized Federated Learning (PFL) has emerged to address these issues by customizing models for each client based on their unique data distribution. Despite its potential, existing PFL approaches typically overlook the coexistence of model and data heterogeneity arising from clients with diverse computational capabilities. To overcome this limitation, we propose a novel method, called Progressive Parameter Alignment (FedPPA), which progressively aligns the weights of common layers across clients with the global model's weights. Our approach not only mitigates inconsistencies between global and local models during client updates, but also preserves client's local knowledge, thereby enhancing personalization robustness in non-IID settings. To further enhance the global model performance while retaining strong personalization, we also integrate entropy-based weighted averaging into the FedPPA framework. Experiments on three image classification datasets, including MNIST, FMNIST, and CIFAR-10, demonstrate that FedPPA consistently outperforms existing FL algorithms, achieving superior performance in personalized adaptation.
翻译:暂无翻译