Counting is a fundamental example of generalization, whether viewed through the mathematical lens of Peano's axioms defining the natural numbers or the cognitive science literature for children learning to count. The argument holds for both cases that learning to count means learning to count infinitely. While few papers have tried to distill transformer "reasoning" to the simplest case of counting, investigating length generalization does occur throughout the literature. In the "train short, test long" paradigm of NLP, length refers to the training sentence length. In formal language recognition, length refers to the input sequence length, or the maximum stack size induced by a pushdown automata. In general problem solving, length refers to the number of hops in a deductive reasoning chain or the recursion depth. For all cases, counting is central to task success. And crucially, generalizing counting inductively is central to success on OOD instances. This work provides extensive empirical results on training language models to count. We experiment with architectures ranging from RNNs, Transformers, State-Space Models and RWKV. We present carefully-designed task formats, auxiliary tasks and positional embeddings to avoid limitations in generalization with OOD-position and OOD-vocabulary. We find that while traditional RNNs trivially achieve inductive counting, Transformers have to rely on positional embeddings to count out-of-domain. As counting is the basis for many arguments concerning the expressivity of Transformers, our finding calls for the community to reexamine the application scope of primitive functions defined in formal characterizations. Finally, modern RNNs also largely underperform traditional RNNs in generalizing counting inductively. We discuss how design choices that enable parallelized training of modern RNNs cause them to lose merits of a recurrent nature.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年7月9日
Arxiv
0+阅读 · 2024年7月9日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员