We present a novel octree-based multi-level framework for large-scale point cloud compression, which can organize sparse and unstructured point clouds in a memory-efficient way. In this framework, we propose a new entropy model that explores the hierarchical dependency in an octree using the context of siblings' children, ancestors, and neighbors to encode the occupancy information of each non-leaf octree node into a bitstream. Moreover, we locally fit quadratic surfaces with a voxel-based geometry-aware module to provide geometric priors in entropy encoding. These strong priors empower our entropy framework to encode the octree into a more compact bitstream. In the decoding stage, we apply a two-step heuristic strategy to restore point clouds with better reconstruction quality. The quantitative evaluation shows that our method outperforms state-of-the-art baselines with a bitrate improvement of 11-16% and 12-14% on the KITTI Odometry and nuScenes datasets, respectively.
翻译:我们为大型点云压缩提出了一个基于小树的多层次新框架,这个框架可以以记忆效率的方式组织稀疏和无结构的点云。在这个框架内,我们提出一个新的酶模型,利用兄弟姐妹的子女、祖先和邻居来探索八树的等级依赖性,将每一非叶树节点的占用信息编码成一个小流。此外,我们在当地安装了基于 voxel 的方形表面和基于 voxel 的几何测深模型,以提供昆虫编码中的几何前科。这些强大的前科使我们的昆虫框架能够将八树编码成一个更紧凑的位流。在解码阶段,我们应用了两步的雄性战略,用更好的重建质量来恢复点云。定量评估表明,我们的方法比最新水平的基线要好,在KITTI Odo度和nuScenes数据集上分别略微改进了11-16%和12-14%。