We study the problem of learning to generate an answer (or completion) to a question (or prompt), where there could be multiple correct answers, any one of which is acceptable at test time. Learning is based on demonstrations of some correct answer to each training question, as in Supervised Fine Tuning (SFT). We formalize the problem as offline imitation learning in contextual bandits, with demonstrations from some optimal policy, without explicitly observed rewards. Prior work assumes that the demonstrator belongs to a low-complexity policy class, which motivates maximum likelihood estimation (i.e., log-loss minimization). In contrast, we propose relying only on the reward model (specifying which answers are correct) being in a low-cardinality class, which we argue is a weaker assumption. We show that likelihood maximization methods can fail in this case, and instead devise an alternative novel approach that learns with sample complexity logarithmic in the cardinality of the reward class. Our work motivates looking beyond likelihood maximization when learning from correct demonstrations.
翻译:暂无翻译