Trajectory planning for multiple robots in shared environments is a challenging problem especially when there is limited communication available or no central entity. In this article, we present Real-time planning using Linear Spatial Separations, or RLSS: a real-time decentralized trajectory planning algorithm for cooperative multi-robot teams in static environments. The algorithm requires relatively few robot capabilities, namely sensing the positions of robots and obstacles without higher-order derivatives and the ability of distinguishing robots from obstacles. There is no communication requirement and the robots' dynamic limits are taken into account. RLSS generates and solves convex quadratic optimization problems that are kinematically feasible and guarantees collision avoidance if the resulting problems are feasible. We demonstrate the algorithm's performance in real-time in simulations and on physical robots. We compare RLSS to two state-of-the-art planners and show empirically that RLSS does avoid deadlocks and collisions in forest-like and maze-like environments, significantly improving prior work, which result in collisions and deadlocks in such environments.
翻译:在共享环境中,多机器人的轨迹规划是一个具有挑战性的问题,特别是在通信有限或没有中央实体的情况下。在本篇文章中,我们介绍了使用线性空间分离或RLSS(即静态环境中合作多机器人团队实时分散的轨迹规划算法)的实时规划:该算法需要相对较少的机器人能力,即在没有较高顺序衍生物的情况下感测机器人的位置和障碍,以及区分机器人与障碍的能力。没有通信要求,也没有考虑到机器人的动态限制。RLSS产生并解决在动态上可行的锥形二次优化问题,并保证在由此产生的问题可行的情况下避免碰撞。我们在模拟和物理机器人方面实时展示了算法的性表现。我们将RLSS与两个最先进的规划者进行比较,并用经验显示,RLSS确实避免了在类似森林和象磁铁的环境中的僵局和碰撞,大大改进了先前的工作,从而导致在这种环境中的碰撞和僵局。</s>