This paper investigates the phenomenon of benign overfitting in binary classification problems with heavy-tailed input distributions. We extend the analysis of maximum margin classifiers to $\alpha$ sub-exponential distributions, where $\alpha \in (0,2]$, generalizing previous work that focused on sub-gaussian inputs. Our main result provides generalization error bounds for linear classifiers trained using gradient descent on unregularized logistic loss in this heavy-tailed setting. We prove that under certain conditions on the dimensionality $p$ and feature vector magnitude $\|\mu\|$, the misclassification error of the maximum margin classifier asymptotically approaches the noise level. This work contributes to the understanding of benign overfitting in more robust distribution settings and demonstrates that the phenomenon persists even with heavier-tailed inputs than previously studied.
翻译:暂无翻译