Blockchain networks are critical for safeguarding digital transactions and assets, but they are increasingly targeted by ransomware attacks exploiting zero-day vulnerabilities. Traditional detection techniques struggle due to the complexity of these exploits and the lack of comprehensive datasets. The UGRansome dataset addresses this gap by offering detailed features for analysing ransomware and zero-day attacks, including timestamps, attack types, protocols, network flows, and financial impacts in bitcoins (BTC). This study uses the Lazy Predict library to automate machine learning (ML) on the UGRansome dataset. The study aims to enhance blockchain security through ransomware detection based on zero-day exploit recognition using the UGRansome dataset. Lazy Predict streamlines different ML model comparisons and identifies effective algorithms for threat detection. Key features such as timestamps, protocols, and financial data are used to predict anomalies as zero-day threats and to classify known signatures as ransomware. Results demonstrate that ML can significantly improve cybersecurity in blockchain environments. The DecisionTreeClassifier and ExtraTreeClassifier, with their high performance and low training times, are ideal candidates for deployment in real-time threat detection systems.
翻译:暂无翻译