Contrastive learning often relies on comparing positive anchor samples with multiple negative samples to perform Self-Supervised Learning (SSL). However, non-contrastive approaches like BYOL, SimSiam, and Barlow Twins achieve SSL without explicit negative samples. In this paper, we introduce a unified matrix information-theoretic framework that explains many contrastive and non-contrastive learning methods. We then propose a novel method Matrix-SSL based on matrix information theory. Experimental results reveal that Matrix-SSL significantly outperforms state-of-the-art methods on the ImageNet dataset under linear evaluation settings and on MS-COCO for transfer learning tasks. Specifically, when performing 100 epochs pre-training, our method outperforms SimCLR by 4.6%, and when performing transfer learning tasks on MS-COCO, our method outperforms previous SOTA methods such as MoCo v2 and BYOL up to 3.3% with only 400 epochs compared to 800 epochs pre-training. Code available at https://github.com/yifanzhang-pro/Matrix-SSL.
翻译:暂无翻译