The lowest-order nonconforming virtual element extends the Morley triangular element to polygons for the approximation of the weak solution $u\in V:=H^2_0(\Omega)$ to the biharmonic equation. The abstract framework allows (even a mixture of) two examples of the local discrete spaces $V_h(P)$ and a smoother allows rough source terms $F\in V^*=H^{-2}(\Omega)$. The a priori and a posteriori error analysis in this paper circumvents any trace of second derivatives by some computable conforming companion operator $J:V_h\to V$ from the nonconforming virtual element space $V_h$. The operator $J$ is a right-inverse of the interpolation operator and leads to optimal error estimates in piecewise Sobolev norms without any additional regularity assumptions on $u\in V$. As a smoother the companion operator modifies the discrete right-hand side and then allows a quasi-best approximation. An explicit residual-based a posteriori error estimator is reliable and efficient up to data oscillations. Numerical examples display the predicted empirical convergence rates for uniform and optimal convergence rates for adaptive mesh-refinement.
翻译:最低顺序不兼容的虚拟元素将Morley三角元素扩展至多边形,以将薄弱溶液 $u\ in V:=H2_0(Omega)$ 接近双声调方程式。抽象框架允许(甚至混合)当地离散空间的两个例子 $V_h(P) 美元和光滑器允许粗化源术语 $F\in V ⁇ H}-2}(\Omega) 。本文的先验和后验错误分析绕过某些可比较兼容兼容伙伴操作者从不兼容虚拟元素空间 $J:V_h\_to V$到 V_h$ 的第二衍生衍生物的任何踪迹。操作者$J$是内部操作者右反的右侧两个例子,并导致在小盘索博尔夫规范中得出最佳误差估计值,而无需对 $uu\ ⁇ (H) 美元作任何额外的常规假设。作为更顺序操作者修改离散右侧面,然后允许准最佳近似近似。一个明确的后端差差差差差差校准校准校准校准校准校准校准校准校准度校准度校准度校准度校准度校准度校准度校准度校准度校准度校准度校准度校准度校准度校准度校准度校准度校准度校准度校准度校准度校准度校准度,以中度校准度校准度校准度的内校准度的内校准度和度校准率率率率度,以校准度度,以校准度。