This work investigates the formal policy synthesis of continuous-state stochastic dynamic systems given high-level specifications in linear temporal logic. To learn an optimal policy that maximizes the satisfaction probability, we take a product between a dynamic system and the translated automaton to construct a product system on which we solve an optimal planning problem. Since this product system has a hybrid product state space that results in reward sparsity, we introduce a generalized optimal backup order, in reverse to the topological order, to guide the value backups and accelerate the learning process. We provide the optimality proof for using the generalized optimal backup order in this optimal planning problem. Further, this paper presents an actor-critic reinforcement learning algorithm when topological order applies. This algorithm leverages advanced mathematical techniques and enjoys the property of hyperparameter self-tuning. We provide proof of the optimality and convergence of our proposed reinforcement learning algorithm. We use neural networks to approximate the value function and policy function for hybrid product state space. Furthermore, we observe that assigning integer numbers to automaton states can rank the value or policy function approximated by neural networks. To break the ordinal relationship, we use an individual neural network for each automaton state's value (policy) function, termed modular learning. We conduct two experiments. First, to show the efficacy of our reinforcement learning algorithm, we compare it with baselines on a classic control task, CartPole. Second, we demonstrate the empirical performance of our formal policy synthesis framework on motion planning of a Dubins car with a temporal specification.


翻译:本研究探讨了在线性时间逻辑中给定高级规范的连续状态随机动态系统的正式策略合成。为了学习最大化满足概率的最优策略,我们采用动态系统和翻译自动机之间的乘积构建乘积系统,从而解决最优规划问题。由于这个乘积系统具有混合乘积状态空间,导致奖励稀疏,我们引入了一个逆拓扑顺序的广义最优备份顺序,以指导价值备份和加速学习过程。我们提供了在这个最优规划问题上使用广义最优备份顺序的最优性证明。此外,本文提出了一个当拓扑顺序适用时的演员评论强化学习算法。这个算法利用先进的数学技术,具有级超参数自调节的性质。我们提供了我们提出的强化学习算法的最优性和收敛性证明。我们使用神经网络来逼近混合乘积态空间的价值函数和策略函数。此外,我们观察到,将整数赋给自动机状态可以对由神经网络逼近的价值或策略函数进行排名。为了打破序数关系,我们为每个自动机状态的值(策略)函数使用单独的神经网络,称为模块化学习。我们进行了两个实验。首先,为了展示我们的强化学习算法的有效性,我们将其与基线在一个经典的控制任务CartPole上进行了比较。其次,我们展示了我们的正式策略综合框架在带有时间规范的Dubins小车运动规划中的实验表现。

0
下载
关闭预览

相关内容

斯坦福大学最新【强化学习】2022课程,含ppt
专知会员服务
124+阅读 · 2022年2月27日
【Yoshua Bengio最新一作论文】GFlowNet基础,GFlowNet Foundations
专知会员服务
25+阅读 · 2021年11月22日
【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
36+阅读 · 2020年2月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月2日
Lifelong Learning Metrics
Arxiv
48+阅读 · 2022年1月20日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员