The observation that stochastic gradient descent (SGD) favors flat minima has played a fundamental role in understanding implicit regularization of SGD and guiding the tuning of hyperparameters. In this paper, we provide a quantitative explanation of this striking phenomenon by relating the particular noise structure of SGD to its \emph{linear stability} (Wu et al., 2018). Specifically, we consider training over-parameterized models with square loss. We prove that if a global minimum $\theta^*$ is linearly stable for SGD, then it must satisfy $\|H(\theta^*)\|_F\leq O(\sqrt{B}/\eta)$, where $\|H(\theta^*)\|_F, B,\eta$ denote the Frobenius norm of Hessian at $\theta^*$, batch size, and learning rate, respectively. Otherwise, SGD will escape from that minimum \emph{exponentially} fast. Hence, for minima accessible to SGD, the flatness -- as measured by the Frobenius norm of the Hessian -- is bounded independently of the model size and sample size. The key to obtaining these results is exploiting the particular geometry awareness of SGD noise: 1) the noise magnitude is proportional to loss value; 2) the noise directions concentrate in the sharp directions of local landscape. This property of SGD noise provably holds for linear networks and random feature models (RFMs) and is empirically verified for nonlinear networks. Moreover, the validity and practical relevance of our theoretical findings are justified by extensive numerical experiments.


翻译:SGD(SGD) 偏向于平底梯度梯度下降(SGD) 的观察在理解 SGD 隐含的正规化和指导超参数调整方面发挥了根本作用。 在本文中,我们将SGD的特殊噪音结构与其 emph{线性稳定性(Wu 等人, 2018年) 联系起来, 以此从数量上解释这一惊人现象。 具体地说, 我们考虑以平方损失来培训超分度模型。 否则, SGD 将摆脱SGD的最小值 emph{线性稳定, 然后它必须满足 $H(theta ⁇ ) ⁇ F\leq O(sqrt{B}}/\eta) $($h(theta ⁇ ) F) {B, B,\\\\\\\ $(eta美元) 表示Hesian 的Frobenius标准, 美元、 批量和学习率率。 否则, SGDGD将快速地基值的精确值模型(根据Frobenal roberalal rolalalalalalalalal reck Stal) roal deal deal deal deal deal deal deal deal deal deal deal deal deal deald) exmal deal deal deal deal deal deal deal deal deal deald ex ex ex ex deal deal deal deal deal deal deal dex exm smal deal deal dealse, ex ex ex exm ex ex exm exm exm exm exms exm exm exm exm exm exm ex ex ex ex exm ex ex exm exm exmal deal deal deal deal deal deal deald ex ex exm exm exmmm exm exm ex ex ex ex ex ex ex ex ex exmmmmmalse ex ex ex ex ex ex ex ex

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
45+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月25日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
14+阅读 · 2020年12月17日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
45+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员