We propose a simple and practical approach for incorporating the effects of muscle inertia, which has been ignored by previous musculoskeletal simulators in both graphics and biomechanics. In our approach, we express the motion of the musculotendons in terms of the motion of the skeletal joints using a chain of Jacobians, so that at the top level, only the reduced degrees of freedom of the skeleton are used to completely drive both bones and musculotendons. Our approach can handle all commonly used musculotendon path types, including those with multiple path points and wrapping surfaces. For muscle paths involving wrapping surfaces, we use neural networks to model the Jacobians, trained using existing wrapping surface libraries, which allows us to effectively handle the discontinuities that occur when musculotendon paths collide with wrapping surfaces. We demonstrate support for higher-order time integrators, complex joints, inverse dynamics, Hill-type muscle models, and differentiability. We also show that in the limit, as the muscle mass is reduced to zero, our approach gracefully degrades to existing simulators in graphics and biomechanics without support for muscle inertia.
翻译:我们提出一种简单实用的方法,将肌肉惯性的影响纳入其中,而肌肉骨骼模拟器先前的肌肉骨骼模拟器在图形和生物机械学中都忽略了这一点。在我们的方法中,我们用一个雅各布人链,用骨骼关节运动来表达肌肉模子的动作,这样,在顶层,只有骨骼自由度的下降能用来完全驱动骨骼和肌肉囊肿。我们的方法可以处理所有常用的肌肉模样类型,包括有多重路径点和包装表面的肌肉模样。对于包装表面的肌肉路径,我们使用神经网络模拟雅各布人,用现有的包装表面图书馆进行培训,使我们能够有效地处理在肌肉结形路径与包装表面交织时出现的不连续现象。我们展示了支持更高顺序的感应时间、复杂关节、反动态、希尔型肌肉模型和可变性。我们还展示了极限,因为肌肉质量将降低到零,我们在肌肉质量和肌肉中将接近感官的温度降低到现有。