Task and motion planning (TAMP) algorithms aim to help robots achieve task-level goals, while maintaining motion-level feasibility. This paper focuses on TAMP domains that involve robot behaviors that take extended periods of time (e.g., long-distance navigation). In this paper, we develop a visual grounding approach to help robots probabilistically evaluate action feasibility, and introduce a TAMP algorithm, called GROP, that optimizes both feasibility and efficiency. We have collected a dataset that includes 96,000 simulated trials of a robot conducting mobile manipulation tasks, and then used the dataset to learn to ground symbolic spatial relationships for action feasibility evaluation. Compared with competitive TAMP baselines, GROP exhibited a higher task-completion rate while maintaining lower or comparable action costs. In addition to these extensive experiments in simulation, GROP is fully implemented and tested on a real robot system.
翻译:任务和动作规划算法旨在帮助机器人在保持运动一级可行性的同时实现任务层面的目标。本文件侧重于涉及需要较长时间的机器人行为(如长距离导航)的TAMP域。在本文件中,我们开发了一个视觉地面方法,以帮助机器人概率评估行动可行性,并引入一个称为GROP的TAMP算法,既优化可行性又提高效率。我们收集了一个数据集,其中包括对执行移动操作任务的机器人进行96 000次模拟试验,然后利用数据集学习确定行动可行性评估的象征性空间关系。与具有竞争力的TAMP基线相比,GROP展示了更高的任务完成率,同时保持较低或可比的行动成本。除了这些广泛的模拟实验外,GROP还在一个真正的机器人系统中完全实施和测试。