Efficient and robust task planning for a human-robot collaboration (HRC) system remains challenging. The human-aware task planner needs to assign jobs to both robots and human workers so that they can work collaboratively to achieve better time efficiency. However, the complexity of the tasks and the stochastic nature of the human collaborators bring challenges to such task planning. To reduce the complexity of the planning problem, we utilize the hierarchical task model, which explicitly captures the sequential and parallel relationships of the task. We model human movements with the sigma-lognormal functions to account for human-induced uncertainties. A human action model adaptation scheme is applied during run-time, and it provides a measure for modeling the human-induced uncertainties. We propose a sampling-based method to estimate human job completion time uncertainties. Next, we propose a robust task planner, which formulates the planning problem as a robust optimization problem by considering the task structure and the uncertainties. We conduct simulations of a robot arm collaborating with a human worker in an electronics assembly setting. The results show that our proposed planner can reduce task completion time when human-induced uncertainties occur compared to the baseline planner.
翻译:为人类机器人合作(HRC)系统制定高效而稳健的任务规划仍然具有挑战性。人类意识的任务规划人员需要为机器人和人类工作者分配工作,以便他们能够合作工作,从而提高时间效率。然而,任务的复杂性和人类合作者的随机性对任务规划提出了挑战。为降低规划问题的复杂性,我们使用了明确反映任务的相继和平行关系的等级任务模式。我们模拟了人类运动和Sigma-logus正常功能,以说明人类引起的不确定因素。在运行期间应用了一个人类行动模型适应计划,它为模拟人类引起的不确定因素提供了一种措施。我们提出了一个基于取样的方法来估计人类完成工作时间的不确定因素。接下来,我们提出一个强有力的任务规划人员,通过考虑任务结构和不确定性来将规划问题描述为一个强有力的优化问题。我们模拟了机器人手臂在电子组装中与一个人类工人合作。结果显示,我们提议的规划人员在与基线计划相比,可以减少任务完成时间。