项目名称: 机电无级自动变速插电式混合动力系统综合控制研究

项目编号: No.51275549

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 机械、仪表工业

项目作者: 叶明

作者单位: 重庆理工大学

项目金额: 80万元

中文摘要: 机电控制CVT采用电机作为主动带轮的驱动元件,碟簧为加载机构,取消了传统CV的液压系统,增大了CVT系统效率和应用范围。插电式混合动力系统是一种先进节能的混合动力模式。以装备机电控制CVT的插电式混合动力系统为对象,研究CVT速比控制方法和夹紧力与传递扭矩的匹配方法。根据系统平顺的要求,研究系统在起动和工况模式切换条件下的发动机、电机、离合器以及CVT相互协调控制策略。根据不同工况模式,综合考虑发动机、电机和电池的工作特性,兼顾发动机起停时间与油耗、排放和混合动力系统可靠性的矛盾,研究基于行驶循环工况能耗最小的全局优化控制策略。搭建试验系统,进行控制参数匹配及控制策略验证和优化。最终建立该系统提高燃油经济性和平稳舒适性的设计控制理论和方法,为机电控制CVT在新能源车辆上的应用奠定理论和试验基础。

中文关键词: 机电无级变速;插电式混合动力;速比控制;模式切换;全局优化

英文摘要: The driving pulley of mechanic-electric continuously variable transmission (MECVT) is driven by motor and pulley trust is supplied by disc springs. So there is no hydraulic system for MECVT. As a result the efficiency of MECVT is higher and the extension of application of MECVT is wider than those of traditional one. Plug-in hybrid system is one of the advantage powertrain system with high efficiency. Work modes will be analyzed based on the configuration of plug-in hybrid electric system equipped with MECVT. Cooperation control strategy of engine, motor, auto clutch and MECVT will be put forward during system starting and work modes shifting to achieve better ride comfortable. Global optimization control strategy for better energy consumption performance of drive cycle will be studied. This control strategy not only consider characteristics of engine, motor and batteries but also try to solve contradictions among engine working time, fuel consumption, exhaust performance and system reliability. Mathematic model will be built for hybrid system simulation. Test rig will be built to verify and optimize control strategy. Finally control theory and method for improving system energy consumption performance and ride performance will be put forward. The theory and experiment research work will support the application

英文关键词: EMCVT;plug-in hybrid electric system;transmission ratio control;modes switching;global optimization

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
【AAAI2022】受限评委下双执行者的高效连续控制
专知会员服务
16+阅读 · 2021年12月22日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
133+阅读 · 2021年2月17日
【博士论文】辨识性特征学习及在细粒度分析中的应用
专知会员服务
29+阅读 · 2020年12月10日
专知会员服务
34+阅读 · 2020年11月26日
专知会员服务
91+阅读 · 2020年8月7日
别再碰燃油车
创业邦杂志
0+阅读 · 2022年4月6日
能量,尽融于心:我们要怎么看待日产 e-POWER?
ZEALER订阅号
0+阅读 · 2021年10月9日
AI 机器人,车企的终局?
THU数据派
1+阅读 · 2021年9月23日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(三)
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【无人机】无人机的自主与智能控制
产业智能官
48+阅读 · 2017年11月27日
李克强:智能车辆运动控制研究综述
厚势
21+阅读 · 2017年10月17日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
Risk-Averse Receding Horizon Motion Planning
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
【AAAI2022】受限评委下双执行者的高效连续控制
专知会员服务
16+阅读 · 2021年12月22日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
133+阅读 · 2021年2月17日
【博士论文】辨识性特征学习及在细粒度分析中的应用
专知会员服务
29+阅读 · 2020年12月10日
专知会员服务
34+阅读 · 2020年11月26日
专知会员服务
91+阅读 · 2020年8月7日
相关资讯
别再碰燃油车
创业邦杂志
0+阅读 · 2022年4月6日
能量,尽融于心:我们要怎么看待日产 e-POWER?
ZEALER订阅号
0+阅读 · 2021年10月9日
AI 机器人,车企的终局?
THU数据派
1+阅读 · 2021年9月23日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(三)
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【无人机】无人机的自主与智能控制
产业智能官
48+阅读 · 2017年11月27日
李克强:智能车辆运动控制研究综述
厚势
21+阅读 · 2017年10月17日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
微信扫码咨询专知VIP会员