Many datasets give partial information about an ordering or ranking by indicating which team won a game, which item a user prefers, or who infected whom. We define a continuous spin system whose Gibbs distribution is the posterior distribution on permutations, given a probabilistic model of these interactions. Using the cavity method we derive a belief propagation algorithm that computes the marginal distribution of each node's position. In addition, the Bethe free energy lets us approximate the number of linear extensions of a partial order and perform model selection between competing probabilistic models, such as the Bradley-Terry-Luce model of noisy comparisons and its cousins.
翻译:许多数据集通过显示哪个团队赢得了一场游戏,哪个用户喜欢哪个项目,或者谁感染了谁。 我们定义了一个连续的旋转系统, Gibbs 分布是这些相互作用的后方分布, 并给出了这些相互作用的概率模型。 我们使用洞穴法得出了一个计算每个节点位置边际分布的信念传播算法。 此外, Bethe 自由能量让我们可以接近部分命令的线性扩展数, 并在诸如Bradley-Terray-Luce 的吵闹比较模型及其表兄弟等竞争性概率模型之间进行模型选择。