Modern virtual assistants use internal semantic parsing engines to convert user utterances to actionable commands. However, prior work has demonstrated that semantic parsing is a difficult multilingual transfer task with low transfer efficiency compared to other tasks. In global markets such as India and Latin America, this is a critical issue as switching between languages is prevalent for bilingual users. In this work we dramatically improve the zero-shot performance of a multilingual and codeswitched semantic parsing system using two stages of multilingual alignment. First, we show that constrastive alignment pretraining improves both English performance and transfer efficiency. We then introduce a constrained optimization approach for hyperparameter-free adversarial alignment during finetuning. Our Doubly Aligned Multilingual Parser (DAMP) improves mBERT transfer performance by 3x, 6x, and 81x on the Spanglish, Hinglish and Multilingual Task Oriented Parsing benchmarks respectively and outperforms XLM-R and mT5-Large using 3.2x fewer parameters.
翻译:现代虚拟助理使用内部语义解析引擎将用户的语义解析器转换为可操作命令。 但是,先前的工作表明,语义解析是一项困难的多语种转移任务,与其他任务相比,转让效率低。在印度和拉丁美洲等全球市场,由于双语用户普遍使用不同语言的转换,这是一个关键问题。在这项工作中,我们利用多语种对齐两个阶段,大大提高了多语种和调和语义解析系统的零弹性能。首先,我们表明,紧张的校正前训练既提高了英语的性能,也提高了传输效率。然后,我们引入了在微调期间无超参数对称对称对齐的有限优化方法。我们多语种多语种解剖析仪(DaMP)将MBERT的传输性能分别提高3x、6x和81x,分别提高Spanglish、Hinglish和多语种任务定向剖析基准的M-R和MT5-M3-MTGL,使用3.2x更少的参数。