The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing the scalability and performance. In this paper, we propose a hard-aware instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality and diversity of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. We further enrich the hard class pseudo-labels with inter-image information through a skillfully designed hard-aware pseudo-label augmentation. Besides, we propose the region-adaptive regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. For the non-pseudo-label region, consistency constraint is also constructed to introduce stronger supervision signals during model optimization. Our method is so concise and efficient that it is easy to be generalized to other UDA methods. Experiments on GTA5 to Cityscapes, SYNTHIA to Cityscapes, and Cityscapes to Oxford RobotCar demonstrate the superior performance of our approach compared with the state-of-the-art methods.
翻译:标签培训数据和未贴标签测试数据之间的差异是最近深层学习模式面临的一个重大挑战。未受监督的域适应(UDA)试图解决这一问题。最近的工作显示,自我培训是UDA的有力方法。然而,现有方法难以平衡缩放度和性能。在本文件中,我们建议UDA在语义分割任务方面采用自适应性强的自培训框架。为了有效提高假标签的质量和多样性,我们开发了一个创新的假标签生成战略,并使用一个适应性选择器。我们进一步通过一种精巧设计的硬智能假标签扩增法来丰富硬类假标签的模拟信息。此外,我们建议采用区域适应性规范,以平滑假标签区和强化非假标签区域。对于非假标签区域,我们还设置了一致性限制,以在模型优化期间引入更强的监管信号。我们的方法非常简洁和高效,因此很容易与其他UDA方法相容化。我们对GTA5的假标签类假标签进行了实验,将城市的性能与城市相比,州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-