A fundamental quest in the theory of deep-learning is to understand the properties of the trajectories in the weight space that a learning algorithm takes. One such property that had very recently been isolated is that of "local elasticity" ($S_{\rm rel}$), which quantifies the propagation of influence of a sampled data point on the prediction at another data point. In this work, we perform a comprehensive study of local elasticity by providing new theoretical insights and more careful empirical evidence of this property in a variety of settings. Firstly, specific to the classification setting, we suggest a new definition of the original idea of $S_{\rm rel}$. Via experiments on state-of-the-art neural networks training on SVHN, CIFAR-10 and CIFAR-100 we demonstrate how our new $S_{\rm rel}$ detects the property of the weight updates preferring to make changes in predictions within the same class of the sampled data. Next, we demonstrate via examples of neural nets doing regression that the original $S_{\rm rel}$ reveals a $2-$phase behaviour: that their training proceeds via an initial elastic phase when $S_{\rm rel}$ changes rapidly and an eventual inelastic phase when $S_{\rm rel}$ remains large. Lastly, we give multiple examples of learning via gradient flows for which one can get a closed-form expression of the original $S_{\rm rel}$ function. By studying the plots of these derived formulas we given a theoretical demonstration of some of the experimentally detected properties of $S_{\rm rel}$ in the regression setting.


翻译:深层学习理论的一项根本探索是理解学习算法在重量空间中学习算法的轨迹属性。 最近被孤立的属性之一是“本地弹性” (S ⁇ rm rel}$),它量化了一个抽样数据点对另一个数据点预测的影响的传播。在这项工作中,我们通过提供新的理论见解和更仔细的经验证据来全面研究本地弹性。首先,具体到分类设置,我们建议对美元-rm rel}的原始概念作出新的定义。在SVHN、CIFAR-10和CIFAR-100上“本地弹性”的状态神经网络培训实验,我们展示了我们新的 $srm Rel} 是如何检测到重量更新的属性的。在一系列原始数据中,我们通过演示网进行一些回归,我们最初的 $rmrel=rel=l=rel=rel=l=lational $r_r_r_r_r_r_l_rx_l_l_l_l_r_r_r_r_r_____r_r_r__r____r_r_r__r__r___r_r_r_r_r___r______r_______r_______r___r___________r________________________

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
7+阅读 · 2021年7月5日
Arxiv
21+阅读 · 2021年2月13日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
4+阅读 · 2020年10月18日
Arxiv
6+阅读 · 2018年2月8日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
7+阅读 · 2021年7月5日
Arxiv
21+阅读 · 2021年2月13日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
4+阅读 · 2020年10月18日
Arxiv
6+阅读 · 2018年2月8日
Top
微信扫码咨询专知VIP会员