We present a lightweight, decentralized algorithm for navigating multiple nonholonomic agents through challenging environments with narrow passages. Our key idea is to allow agents to yield to each other in large open areas instead of narrow passages, to increase the success rate of conventional decentralized algorithms. At pre-processing time, our method computes a medial axis for the freespace. A reference trajectory is then computed and projected onto the medial axis for each agent. During run time, when an agent senses other agents moving in the opposite direction, our algorithm uses the medial axis to estimate a Point of Impact (POI) as well as the available area around the POI. If the area around the POI is not large enough for yielding behaviors to be successful, we shift the POI to nearby large areas by modulating the agent's reference trajectory and traveling speed. We evaluate our method on a row of 4 environments with up to 15 robots, and we find our method incurs a marginal computational overhead of 10-30 ms on average, achieving real-time performance. Afterward, our planned reference trajectories can be tracked using local navigation algorithms to achieve up to a $100\%$ higher success rate over local navigation algorithms alone.
翻译:我们展示了一种轻量、分散的算法,用于通过狭小的通道,通过具有挑战性的环境,导航多个非金体学剂。我们的关键想法是允许代理人在大空空空区而不是狭空空空空区相互让步,以提高传统分散算法的成功率。在预处理时间,我们的方法计算了一个自由空间的介质轴。然后计算了一个参考轨迹,并投向每个代理人的介质轴。在运行期间,当一个代理人感知其他代理人向相反方向移动时,我们的算法使用中间轴来估计一个影响点(POI)以及POI周围的可用区域。如果POI周围的区域不够大,不足以产生成功的行为,那么我们可以通过调整该代理人的参考轨迹和移动速度,将POI转移到附近的大区域。我们用四行四行四行的四行的计算法,最多有15个机器人,我们发现我们的方法平均产生10-30米的边际计算间接费用,实现实时性能。之后,我们计划的参考轨迹可以使用当地导航率来跟踪超过100美元的地方航行成功率。</s>