We propose FiberNet, a method to estimate \emph{in-vivo} the cardiac fiber architecture of the human atria from multiple catheter recordings of the electrical activation. Cardiac fibers play a central role in the electro-mechanical function of the heart, yet they are difficult to determine in-vivo, and hence rarely truly patient-specific in existing cardiac models. FiberNet learns the fiber arrangement by solving an inverse problem with physics-informed neural networks. The inverse problem amounts to identifying the conduction velocity tensor of a cardiac propagation model from a set of sparse activation maps. The use of multiple maps enables the simultaneous identification of all the components of the conduction velocity tensor, including the local fiber angle. We extensively test FiberNet on synthetic 2-D and 3-D examples, diffusion tensor fibers, and a patient-specific case. We show that 3 maps are sufficient to accurately capture the fibers, also in the presence of noise. With fewer maps, the role of regularization becomes prominent. Moreover, we show that the fitted model can robustly reproduce unseen activation maps. We envision that FiberNet will help the creation of patient-specific models for personalized medicine. The full code is available at http://github.com/fsahli/FiberNet.
翻译:我们提议FiberNet, 这是一种用电动的多个导管记录来估计人类心脏纤维结构的方法。 Cariac 纤维在心脏的电机功能中发挥着中心作用,但很难在电机功能中确定,因此在现有的心脏模型中很难确定,因此在现有的心脏模型中也很少真正具体病人。FiberNet通过解决物理知情神经网络的反问题来了解纤维安排。反之,问题在于从一组稀疏的活动地图中确定心脏传播模型的导电速度振动速度。使用多幅地图可以同时识别导电速振动图的所有组成部分,包括当地纤维角度。我们广泛测试FiberNet的合成2-D和3D示例,扩散抗震动纤维,以及一个病人特例。我们显示, 3张地图足以准确捕捉纤维,同样在噪音中。 地图越少,正规化的作用就越突出。 此外,我们显示, 安装的模型可以强有力地复制隐性活动地图。我们设想FiberNet将个人代码用于完全的Fiberli/com 。