This paper studies the cardinality of codes correcting insertions and deletions. We give improved upper and lower bounds on code size. Our upper bound is obtained by utilizing the asymmetric property of list decoding for insertions and deletions and can be seen as analogous to the Elias bound in the Hamming metric. Our non-asymptotic bound is better than the existing bounds when the minimum Levenshtein distance is relatively large. The asymptotic bound exceeds the Elias and the MRRW bounds adapted from the Hamming-metric bounds for the binary and the quaternary cases. Our lower bound improves on the bound by Levenshtein, but its effect is limited and vanishes asymptotically.
翻译:本文研究了校正插入和删除的代码的基本要素。 我们在代码大小上下设置了更好的界限。 我们的上限界限是通过使用列表解码的不对称属性来获取的,用于插入和删除,并且可以被视为类似于Hamming指标中与埃利亚斯捆绑的埃利亚斯。 当最小的Levenshtein距离相对较大时,我们的非简易界限比现有界限要好。 无时效界限超过了以利亚和从二进制和四进制案例的哈明度界限中调整的MRRW界限。我们对Levenshtein约束的界限要小一些,但其效果却有限,而且会瞬间消失。