We consider the problem of comparing probability densities between two groups. A new probabilistic tensor product smoothing spline framework is developed to model the joint density of two variables. Under such a framework, the probability density comparison is equivalent to testing the presence/absence of interactions. We propose a penalized likelihood ratio test for such interaction testing and show that the test statistic is asymptotically chi-square distributed under the null hypothesis. Furthermore, we derive a sharp minimax testing rate based on the Bernstein width for nonparametric two-sample tests and show that our proposed test statistics is minimax optimal. In addition, a data-adaptive tuning criterion is developed to choose the penalty parameter. Simulations and real applications demonstrate that the proposed test outperforms the conventional approaches under various scenarios.
翻译:我们考虑了两个组间比较概率密度的问题。我们开发了一个新的概率强产产品滑动样板框架,以模拟两个变量的共同密度。在这样一个框架内,概率密度比较相当于测试是否存在/没有相互作用。我们建议为这种互动测试进行受罚的可能性比率测试,并表明测试统计数据在无效假设下是无症状的。此外,我们根据伯恩斯坦宽度得出了一个以非对称两光谱测试为基础的尖锐微模轴测试率,并表明我们提议的测试统计数据是最优化的。此外,我们制定了数据调整标准来选择惩罚参数。模拟和真实应用表明,拟议的测试在各种假设下超越了常规方法。