Cochran's $Q$ statistic is routinely used for testing heterogeneity in meta-analysis. Its expected value is also used for estimation of between-study variance $\tau^2$. Cochran's $Q$, or $Q_{IV}$, uses estimated inverse-variance weights which makes approximating its distribution rather complicated. As an alternative, we are investigating a new $Q$ statistic, $Q_F$, whose constant weights use only the studies' effective sample sizes. For standardized mean difference as the measure of effect, we study, by simulation, approximations to distributions of $Q_{IV}$ and $Q_F$, as the basis for tests of heterogeneity and for new point and interval estimators of the between-study variance $\tau^2$. These include new DerSimonian-Kacker (2007)-type moment estimators based on the first moment of $Q_F$, and novel median-unbiased estimators of $\tau^2$.
翻译:Cochran的$Q$统计数据通常用于测试元分析中的异质性。它的预期值也用于估算研究间差异$+2美元。Cochran的$Q$或$IV美元使用估计反差加权数,使得其分布变得相当复杂。作为替代办法,我们正在调查一个新的$Q统计数据,$+F美元,其常数重量仅使用研究的有效样本大小。关于标准化平均值差异,作为效果的衡量标准,我们通过模拟研究,将$+IV美元和$+F$的分布近似值作为测试异异质和研究间差异新点和间隔估计值的基础。其中包括新的DerSimonian-Kacker(2007年)型点数测算器,最初以$+F美元为基础,以及新的中位无偏见估测器,以$\tau2美元为基础。