A differential geometric framework to construct an asymptotically unbiased estimator of a function of a parameter is presented. The derived estimator asymptotically coincides with the uniformly minimum variance unbiased estimator, if a complete sufficient statistic exists. The framework is based on the maximum a posteriori estimation, where the prior is chosen such that the estimator is unbiased. The framework is demonstrated for the second-order asymptotic unbiasedness (unbiased up to $O(n^{-1})$ for a sample of size $n$). The condition of the asymptotic unbiasedness leads the choice of the prior such that the departure from a kind of harmonicity of the estimand is canceled out at each point of the model manifold. For a given estimand, the prior is given as an integral. On the other hand, for a given prior, we can address the bias of what estimator can be reduced by solving an elliptic partial differential equation. A family of invariant priors, which generalizes the Jeffreys prior, is mentioned as a specific example. Some illustrative examples of applications of the proposed framework are provided.
翻译:提供了用于构建一个参数函数的无症状、不带偏见的偏差估计值的差别几何框架。 如果存在完整的充分统计数据, 衍生的测算器无症状, 与统一的最低差异、 无偏差估计值相吻合。 框架基于最高事后估计值, 其中先选的测算器是不带偏见的。 该框架为第二顺序的无症状公正度( 标度最高为$O( ⁇ -1}) 美元, 标度为$n$ ) 样本 。 无症状的不公正性导致选择前一种选择, 从而在模型的每个点都取消偏离天顶点的偏差。 对于给定的估计值, 前一种是作为整体的。 另一方面, 对于给定的测算器, 我们可以解决一个精度部分差异方程的偏差, 。 一些变量前位的组合, 之前对 Jeffreyls 的描述性框架, 被作为具体的示例提及。