项目名称: 壁面振动减阻机理及实现流体负阻力的方法研究

项目编号: No.51275412

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 机械、仪表工业

项目作者: 董海军

作者单位: 西北工业大学

项目金额: 80万元

中文摘要: 减小航行器的阻力、提高航速、节约能源消耗是人类一直追求的目标。壁面与流体间的振动减阻作为一种新的减阻手段,其特殊的减阻方法和高的减阻率受到人们的高度重视。由于其研究刚刚起步,已有的研究主要是基于湍流理论研究壁面的展向振动对液体湍流结构的影响,以及飞行器蒙皮自激振动对气体湍流结构的影响来研究振动减阻机理的,仅限于研究低频率大振幅的机械振动,对超声振动及壁面其他方向上振动的情况还没有涉足。本研究将在深入细致了解壁面振动的湍流减阻机理的基础上,利用直接数值模拟技术及分子动力学模拟等手段对壁面振动条件下壁面-流体间的摩擦阻力进行仿真研究,揭示壁面振动的减阻机理,进而分析并实验研究不同振动方向及不同振动参数对减阻效果的影响关系。并基于液体媒质非接触式超声电机的原理研究实现流体负阻力。本项目的研究有望为减小航行器的阻力、提高航行速度及降低能耗提供一个新的途径。

中文关键词: 减阻;壁面波动;壁面振动;流体;

英文摘要: Human beings have been pursuing the goal of reducing the resistance of the aircrafts, increasing the speed of aircrafts and saving energy. Oscillation drag reduction between wall and fluid is a new kind of drag reduction method. The specific characteristic and high ratio of the drag reduction have aroused much interests for researchers. However, as a new reserch area, only same aspects have been studied, including the affection of liquid turbulence structure with spanwise oscillation based on the theory of turbulence, and the affection of gas turbulence structure with self-excited vibration of skin of aircrafts. These researches are limited to high amplitude and low frequency of mechanical vibration. The supersonic vibration and wall vibration in the other directions instead of spanwise direction are not studied. Based on the turbulence drag reduction with wall oscillation, this study focuses on direct numerical simulation and molecular dynamics simulation to simulate the frictional drag between wall and fluid, and expose the mechanism of drag reduction with wall oscillation. In addition, the relationship between the effect of drag reduction and different oscillation parameters and directions are analyzed experimentally. Negative resistance of liquid is also studied with liquid medium non-contact ultrasonic moto

英文关键词: drag reduction;wall fluctuation ;wall vibration ;fluid;

成为VIP会员查看完整内容
0

相关内容

中国智能驾驶行业研究报告(附报告)64页pdf
专知会员服务
68+阅读 · 2022年3月6日
混合增强视觉认知架构及其关键技术进展
专知会员服务
41+阅读 · 2021年11月20日
数据中心传感器技术应用 白皮书
专知会员服务
41+阅读 · 2021年11月13日
专知会员服务
13+阅读 · 2021年8月29日
专知会员服务
45+阅读 · 2020年11月13日
专知会员服务
28+阅读 · 2020年10月9日
人机对抗智能技术
专知会员服务
201+阅读 · 2020年5月3日
流媒体音响套装:山灵 EA5 我愿称之为万元内最强?
ZEALER订阅号
0+阅读 · 2021年12月16日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
13+阅读 · 2021年3月3日
小贴士
相关主题
相关VIP内容
中国智能驾驶行业研究报告(附报告)64页pdf
专知会员服务
68+阅读 · 2022年3月6日
混合增强视觉认知架构及其关键技术进展
专知会员服务
41+阅读 · 2021年11月20日
数据中心传感器技术应用 白皮书
专知会员服务
41+阅读 · 2021年11月13日
专知会员服务
13+阅读 · 2021年8月29日
专知会员服务
45+阅读 · 2020年11月13日
专知会员服务
28+阅读 · 2020年10月9日
人机对抗智能技术
专知会员服务
201+阅读 · 2020年5月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员