Working with so-called linkages allows to define a copula-based, $[0,1]$-valued multivariate dependence measure $\zeta^1(\boldsymbol{X},Y)$ quantifying the scale-invariant extent of dependence of a random variable $Y$ on a $d$-dimensional random vector $\boldsymbol{X}=(X_1,\ldots,X_d)$ which exhibits various good and natural properties. In particular, $\zeta^1(\boldsymbol{X},Y)=0$ if and only if $\boldsymbol{X}$ and $Y$ are independent, $\zeta^1(\boldsymbol{X},Y)$ is maximal exclusively if $Y$ is a function of $\boldsymbol{X}$, and ignoring one or several coordinates of $\boldsymbol{X}$ can not increase the resulting dependence value. After introducing and analyzing the metric $D_1$ underlying the construction of the dependence measure and deriving examples showing how much information can be lost by only considering all pairwise dependence values $\zeta^1(X_1,Y),\ldots,\zeta^1(X_d,Y)$ we derive a so-called checkerboard estimator for $\zeta^1(\boldsymbol{X},Y)$ and show that it is strongly consistent in full generality, i.e., without any smoothness restrictions on the underlying copula. Some simulations illustrating the small sample performance of the estimator complement the established theoretical results.
翻译:使用所谓的链接可以定义基于 $[0,1]${美元价值的多变量依赖度量 $zeta%1 (\ boldsylmbol{X},Y), 以量化一个随机变量Y$的大小异差依赖度, $\ boldsymbol{X} (X_1,\ldots,X_d) 美元, 并忽略一个或几个显示各种良好和自然属性的坐标。 特别是, $zeta%1(\ boldsymbol{X}, Y) = 0美元, 只有 $\ boldsymbol{x} 和$Y$是独立的, $zeta_ 1 (boldsysol{X} ) 和$1 (boldsysysyball_lationalthislationality) 才能增加由此产生的平稳依赖值。 在引入并分析用于构建依赖度度度度度值的 $1xxxxx 基础限制值的 之前, 才能显示整个自动测试结果。