This paper presents a new parameter estimation algorithm for the adaptive control of a class of time-varying plants. The main feature of this algorithm is a matrix of time-varying learning rates, which enables parameter estimation error trajectories to tend exponentially fast towards a compact set whenever excitation conditions are satisfied. This algorithm is employed in a large class of problems where unknown parameters are present and are time-varying. It is shown that this algorithm guarantees global boundedness of the state and parameter errors of the system, and avoids an often used filtering approach for constructing key regressor signals. In addition, intervals of time over which these errors tend exponentially fast toward a compact set are provided, both in the presence of finite and persistent excitation. A projection operator is used to ensure the boundedness of the learning rate matrix, as compared to a time-varying forgetting factor. Numerical simulations are provided to complement the theoretical analysis.
翻译:本文为某类时间变化的植物的适应性控制提供了一个新的参数估计算法。 此算法的主要特征是时间变化学习率矩阵, 使得参数估计错误轨迹在满足引力条件时能够以指数速度快速转向一个紧凑的集体。 此算法用于大量的问题, 存在未知参数, 且是时间变化。 此算法可以保证系统状态和参数差错的全球界限, 并避免在构建关键回归器信号时经常使用的过滤法。 此外, 在有限和持续引力的情况下, 提供了这些差错朝向一个集体的快速间隔时间。 使用预测操作器来确保学习率矩阵与一个时间变化的遗忘系数之间的界限。 提供数值模拟是为了补充理论分析。