In this work, we present an alternative formulation of the higher eigenvalue problem associated to the infinity Laplacian, which opens the door for numerical approximation of eigenfunctions. A rigorous analysis is performed to show the equivalence of the new formulation to the traditional one. Subsequently, we present consistent monotone schemes to approximate infinity ground states and higher eigenfunctions on grids. We prove that our method converges (up to a subsequence) to a viscosity solution of the eigenvalue problem, and perform numerical experiments which investigate theoretical conjectures and compute eigenfunctions on a variety of different domains.
翻译:在这项工作中,我们提出了与无穷拉皮拉西亚相关的高精度问题的替代提法,这打开了静能数字近似的大门。我们进行了严格的分析,以显示新配方与传统配方的等值。随后,我们提出了一致的单调办法,以近似无穷地面状态和电网上的高精度。我们证明,我们的方法(直到一个子序列)与对无穷问题的一种粘度解决办法相融合(直到一个子序列),并进行了数字实验,对各种不同领域的理论猜想和构算元进行了调查。