Congestion pricing has long been hailed as a means to mitigate traffic congestion; however, its practical adoption has been limited due to the resulting social inequity issue, e.g., low-income users are priced out off certain roads. This issue has spurred interest in the design of equitable mechanisms that aim to refund the collected toll revenues as lump-sum transfers to users. Although revenue refunding has been extensively studied for over three decades, there has been no thorough characterization of how such schemes can be designed to simultaneously achieve system efficiency and equity objectives. In this work, we bridge this gap through the study of \emph{congestion pricing and revenue refunding} (CPRR) schemes in non-atomic congestion games. We first develop CPRR schemes, which in comparison to the untolled case, simultaneously increase system efficiency without worsening wealth inequality, while being \emph{user-favorable}: irrespective of their initial wealth or values-of-time (which may differ across users), users would experience a lower travel cost after the implementation of the proposed scheme. We then characterize the set of optimal user-favorable CPRR schemes that simultaneously maximize system efficiency and minimize wealth inequality. Finally, we provide a concrete methodology for computing optimal CPRR schemes and also highlight additional equilibrium properties of these schemes under different models of user behavior. Overall, our work demonstrates that through appropriate refunding policies we can design user-favorable CPRR schemes that maximize system efficiency while reducing wealth inequality.


翻译:拥堵定价长期以来被誉为缓解交通拥堵的手段;然而,其实际采用受到了其带来的社会不平等问题的限制,如低收入用户会被定价过高而无法使用某些道路。这个问题引起了人们对设计旨在作为一次性转移向用户退还收取的通行费用,从而达到公平性的机制的兴趣。尽管收入退还已经研究了三十多年,但还没有彻底说明如何同时满足效率和公正目标的这种机制可以如何设计。在本工作中,我们通过研究非原子拥堵博弈中的“拥堵定价和收入退还”(CPRR)方案来弥补这一差距。我们首先开发了CPRR方案,与未收费时相比,可以同时提高系统效率,而不会恶化财富不平等,同时又是“用户友好的”:不管他们的财富状况或不同用户之间的时价值(可能会有所不同),在实施所提出的方案之后,用户会经历更低的出行成本。然后,我们描述了最优的用户友好CPRR方案集,这些方案可以同时最大化系统效率并减少财富不平等。最后,我们提供了一种计算最优CPRR方案的具体方法,并在不同的用户行为模型下突出了这些方案的其他均衡特性。总体而言,我们的工作表明,通过适当的退款政策,我们可以设计用户友好的CPRR方案,最大化系统效率,同时减少财富不平等。

0
下载
关闭预览

相关内容

【元宇宙】“The State Of The Metaverse”26页报告
专知会员服务
43+阅读 · 2022年5月25日
专知会员服务
22+阅读 · 2021年8月18日
专知会员服务
12+阅读 · 2021年3月13日
专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员