We discuss solution algorithms for calibrating a tumor growth model using imaging data posed as a deterministic inverse problem. The forward model consists of a nonlinear and time-dependent reaction-diffusion partial differential equation (PDE) with unknown parameters (diffusivity and proliferation rate) being spatial fields. We use a dimension-independent globalized, inexact Newton Conjugate Gradient algorithm to solve the PDE-constrained optimization. The required gradient and Hessian actions are also presented using the adjoint method and Lagrangian formalism.
翻译:我们讨论使用成像数据作为决定性反向问题校准肿瘤生长模型的解决方案算法。 前方模型包括非线性和时间性反扩散反应偏差方程式(PDE),其未知参数(硬性和扩散率)为空间域。我们使用维维独立的全球化、不精确的牛顿共振梯度算法来解决受PDE限制的优化。所需的梯度和赫森动作也使用联合方法和拉格朗江正式主义来介绍。