Wasserstein distributionally robust optimization (\textsf{WDRO}) is a popular model to enhance the robustness of machine learning with ambiguous data. However, the complexity of \textsf{WDRO} can be prohibitive in practice since solving its ``minimax'' formulation requires a great amount of computation. Recently, several fast \textsf{WDRO} training algorithms for some specific machine learning tasks (e.g., logistic regression) have been developed. However, the research on designing efficient algorithms for general large-scale \textsf{WDRO}s is still quite limited, to the best of our knowledge. \textit{Coreset} is an important tool for compressing large dataset, and thus it has been widely applied to reduce the computational complexities for many optimization problems. In this paper, we introduce a unified framework to construct the $\epsilon$-coreset for the general \textsf{WDRO} problems. Though it is challenging to obtain a conventional coreset for \textsf{WDRO} due to the uncertainty issue of ambiguous data, we show that we can compute a ``dual coreset'' by using the strong duality property of \textsf{WDRO}. Also, the error introduced by the dual coreset can be theoretically guaranteed for the original \textsf{WDRO} objective. To construct the dual coreset, we propose a novel grid sampling approach that is particularly suitable for the dual formulation of \textsf{WDRO}. Finally, we implement our coreset approach and illustrate its effectiveness for several \textsf{WDRO} problems in the experiments.


翻译:Wasserstein分布稳健优化(WDRO)是一种流行的模型,可增强具有不确定数据的机器学习的稳健性。然而,在实践中,WDRO的复杂性可能会阻碍其应用,因为解决其“极小极大”的表述需要大量计算。最近,已经开发了几种适用于某些特定机器学习任务(例如,逻辑回归)的快速WDRO训练算法。然而,据我们所知,设计高效的算法来解决一般大规模WDRO问题的研究仍然非常有限。核心集是一种重要的工具,用于压缩大数据集,因此它已经被广泛应用于减少许多优化问题的计算复杂度。在本文中,我们介绍了一个统一的框架来构建一般WDRO问题的ε-coreset。虽然由于模糊数据的不确定性问题,获取WDRO的传统核心集很具有挑战性,但我们表明,我们可以通过使用WDRO的强对偶性质计算出一个“对偶核心集”。此外,由对偶核心集引入的误差可以在原始WDRO目标上得到理论保证。为了构建对偶核心集,我们提出了一种新颖的网格抽样方法,特别适用于WDRO的对偶格式。最后,我们实现了核心集方法,并在实验中说明了其对几个WDRO问题的有效性。

0
下载
关闭预览

相关内容

干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
49+阅读 · 2022年7月24日
专知会员服务
144+阅读 · 2021年3月17日
再谈人脸识别损失函数综述
人工智能前沿讲习班
14+阅读 · 2019年5月7日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2022年5月6日
VIP会员
相关VIP内容
干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
49+阅读 · 2022年7月24日
专知会员服务
144+阅读 · 2021年3月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员