We apply Bayesian optimization and reinforcement learning to a problem in topology: the question of when a knot bounds a ribbon disk. This question is relevant in an approach to disproving the four-dimensional smooth Poincar\'e conjecture; using our programs, we rule out many potential counterexamples to the conjecture. We also show that the programs are successful in detecting many ribbon knots in the range of up to 70 crossings.
翻译:我们应用贝叶斯优化和强化学习来解决拓扑学领域中的一个问题:判断一个结是否为带状物的边界。这个问题在反证四维平稳 Poincaré 猜想的方法中很重要。使用我们的程序,我们排除了许多可能的猜想反例。我们还展示了这些程序在检测多达70个交叉点范围内的许多带状结上是成功的。