Unsupervised Domain Adaptation (UDA) is a key field in visual recognition, as it enables robust performances across different visual domains. In the deep learning era, the performance of UDA methods has been driven by better losses and by improved network architectures, specifically the addition of auxiliary domain-alignment branches to pre-trained backbones. However, all the neural architectures proposed so far are hand-crafted, which might hinder further progress. The current copious offspring of Neural Architecture Search (NAS) only alleviates hand-crafting so far, as it requires labels for model selection, which are not available in UDA, and is usually applied to the whole architecture, while using pre-trained models is a strict requirement for high performance. No prior work has addressed these aspects in the context of NAS for UDA. Here we propose an Adversarial Branch Architecture Search (ABAS) for UDA, to learn the auxiliary branch network from data without handcrafting. Our main contribution include i. a novel data-driven ensemble approach for model selection, to circumvent the lack of target labels, and ii. a pipeline to automatically search for the best performing auxiliary branch. To the best of our knowledge, ABAS is the first NAS method for UDA to comply with a pre-trained backbone, a strict requirement for high performance. ABAS outputs both the optimal auxiliary branch and its trained parameters. When applied to two modern UDA techniques, DANN and ALDA, it improves performance on three standard CV datasets (Office31, Office-Home and PACS). In all cases, ABAS robustly finds the branch architectures which yield best performances. Code will be released.


翻译:无人监督的域域适应(UDA)是视觉识别的一个关键领域,因为它能在不同视觉领域实现强力性能。在深学习时代,UDA方法的性能是由更好的损耗和改进网络结构驱动的,特别是将辅助域对齐分支添加到经过预先训练的骨干中。然而,迄今为止提出的所有神经结构都是手工制作的,这可能会阻碍进一步的进展。目前由神经结构搜索(NAS)产生的超酷的子孙只能缓解手工艺,因为它需要模型选择的标签,而UDA没有这种标签,通常适用于整个结构,而使用经过预先训练的模型是高性能的严格要求。在UDA中,没有将辅助域对接连的系统对齐,但是我们建议为UDA设计一个自动的分支建筑搜索,从数据中学习辅助分支网络,而不用手工制作。我们的主要贡献包括:在模型选择方面采用由新数据驱动的混合组合,以避开缺乏目标标签,通常适用于整个结构,而使用经过预先训练的模型对A-BA公司进行自动搜索的A-BA系统系统高级性能要求。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员