Parameter-efficient fine-tuning approaches have recently garnered a lot of attention. Having considerably lower number of trainable weights, these methods can bring about scalability and computational effectiveness. In this paper, we look for optimal sub-networks and investigate the capability of different transformer modules in transferring knowledge from a pre-trained model to a downstream task. Our empirical results suggest that every transformer module in BERT can act as a winning ticket: fine-tuning each specific module while keeping the rest of the network frozen can lead to comparable performance to the full fine-tuning. Among different modules, LayerNorms exhibit the best capacity for knowledge transfer with limited trainable weights, to the extent that, with only 0.003% of all parameters in the layer-wise analysis, they show acceptable performance on various target tasks. On the reasons behind their effectiveness, we argue that their notable performance could be attributed to their high-magnitude weights compared to that of the other modules in the pre-trained BERT.


翻译:参数效率微调方法最近引起了许多关注。 这些方法由于可训练的重量数量要少得多,可以带来可扩缩和计算效果。 在本文中,我们寻找最佳的子网络,调查不同变压器模块将知识从预培训模式向下游任务转移的能力。我们的经验结果表明,BERT中每个变压器模块都可以发挥胜出的作用:微调每个特定模块,同时将网络的其余部分冻结起来,可以导致与完全微调相匹配的性能。 在不同的模块中,TelmNorms展示了以有限的可训练重量进行知识转让的最佳能力,其范围是,在分层分析中,所有参数中只有0.003%的参数,它们显示了各种目标任务中的可接受性能。基于其有效性背后的原因,我们认为,它们的显著性能可以归因于它们与预培训的BERT中其他模块相比的高压度重量。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
Arxiv
35+阅读 · 2022年3月14日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员