项目名称: 基于间断petrov有限元的Trefftz方法及其在雷达散射截面中的应用

项目编号: No.11501529

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 袁龙

作者单位: 山东科技大学

项目金额: 18万元

中文摘要: Trefftz方法已在实波数齐次声波方程和电磁场方程组的求解中得到了广泛应用。然而,随着声波和电磁场应用领域提出的问题越来越复杂,如何实现高效数值求解复波数高频问题已成为一个有着广泛工程应用背景的热点前沿课题。本项目希望在保持Trefftz方法高精度求解实波数齐次方程的特点及区域分解法并行求解大规模方程能力的同时,借鉴间断petrov有限元法定义不同的检验空间和测试空间的思想,实现高效求解复波数高频问题。研究内容如下:1. 利用间断petrov有限元法构造不同检验空间和测试空间的思想,改进Trefftz方法用于高精度求解复波数方程;2. 为改进后的Trefftz方法,开发用于求解高频问题的可拓展区域分解算法;3. 将改进后的Trefftz方法及其相应的快速算法应用于一类典型高频问题(雷达散射截面)的数值模拟。

中文关键词: Trefftz方法;间断petrov有限元方法;区域分解方法;雷达散射截面计算

英文摘要: The Trefftz method has been very popular in solving homogeneous Helmholtz equation and Maxwell’s equations with real wave numbers. However, to meet the needs of acoustic and electromagnetic fields, more and more complex problems should be considered. The kind of problems, described by the characters of the complex wave numbers and high frequency, has become a hot and frontier research topic due to its wide applications in acoustic and electromagnetic fields. This project aims to develop a new Trefftz method based on the idea of discontinuous petrov-galerkin method for defining the different trial space and test space. The developed Trefftz method can not only keep the advantages of original Trefftz method in accurately solving homogeneous equations with real wave numbers and domain decomposition method in parallel solving large-scale equations, but also solve the homogeneous problems efficiently with the complex wave numbers and high frequency. Our research topics are given in the following. (1) Develop the new Trefftz method based on discontinuous petrov-galerkin method for efficiently solving homogeneous equations with complex wave numbers. (2) For solving high-frequency problems, the scalable domain decomposition preconditioner corresponding to the developed Trefftz method will be proposed. (3) The developed Trefftz method and its fast solver will be used to numerically simulate a class of typical high-frequency problems ( radar cross section ).

英文关键词: Trefftz method;discontinuous petrov-galerkin method;domain decomposition method;computation of radar cross section

成为VIP会员查看完整内容
0

相关内容

【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
58+阅读 · 2022年2月3日
深度对抗视觉生成综述
专知会员服务
32+阅读 · 2021年12月29日
联邦学习研究综述
专知会员服务
148+阅读 · 2021年12月25日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
55+阅读 · 2021年4月20日
专知会员服务
29+阅读 · 2021年4月12日
专知会员服务
114+阅读 · 2021年1月11日
【NeurIPS2020-北大】非凸优化裁剪算法的改进分析
专知会员服务
28+阅读 · 2020年10月11日
开工大吉,虎力全开!
微软招聘
0+阅读 · 2022年2月7日
【牛津大学】多级蒙特卡洛方法,70页pdf
九坤投资 | 实习生即可年薪50W
图与推荐
1+阅读 · 2021年8月27日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
M365热招 | N+Offer“职”等你来
微软招聘
0+阅读 · 2021年3月17日
【优博微展2019】李志泽:简单快速的机器学习优化方法
清华大学研究生教育
14+阅读 · 2019年10月8日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
精品公开课 | 随机梯度下降算法综述
七月在线实验室
13+阅读 · 2017年7月11日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Convex-Concave Min-Max Stackelberg Games
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
58+阅读 · 2022年2月3日
深度对抗视觉生成综述
专知会员服务
32+阅读 · 2021年12月29日
联邦学习研究综述
专知会员服务
148+阅读 · 2021年12月25日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
55+阅读 · 2021年4月20日
专知会员服务
29+阅读 · 2021年4月12日
专知会员服务
114+阅读 · 2021年1月11日
【NeurIPS2020-北大】非凸优化裁剪算法的改进分析
专知会员服务
28+阅读 · 2020年10月11日
相关资讯
开工大吉,虎力全开!
微软招聘
0+阅读 · 2022年2月7日
【牛津大学】多级蒙特卡洛方法,70页pdf
九坤投资 | 实习生即可年薪50W
图与推荐
1+阅读 · 2021年8月27日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
M365热招 | N+Offer“职”等你来
微软招聘
0+阅读 · 2021年3月17日
【优博微展2019】李志泽:简单快速的机器学习优化方法
清华大学研究生教育
14+阅读 · 2019年10月8日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
精品公开课 | 随机梯度下降算法综述
七月在线实验室
13+阅读 · 2017年7月11日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员