Motivated by cutting-edge applications like cryo-electron microscopy (cryo-EM), the Multi-Reference Alignment (MRA) model entails the learning of an unknown signal from repeated measurements of its images under the latent action of a group of isometries and additive noise of magnitude $\sigma$. Despite significant interest, a clear picture for understanding rates of estimation in this model has emerged only recently, particularly in the high-noise regime $\sigma \gg 1$ that is highly relevant in applications. Recent investigations have revealed a remarkable asymptotic sample complexity of order $\sigma^6$ for certain signals whose Fourier transforms have full support, in stark contrast to the traditional $\sigma^2$ that arise in regular models. Often prohibitively large in practice, these results have prompted the investigation of variations around the MRA model where better sample complexity may be achieved. In this paper, we show that \emph{sparse} signals exhibit an intermediate $\sigma^4$ sample complexity even in the classical MRA model. Our results explore and exploit connections of the MRA estimation problem with two classical topics in applied mathematics: the \textit{beltway problem} from combinatorial optimization, and \textit{uniform uncertainty principles} from harmonic analysis.


翻译:多参考协调模式(MRA)模型受到冷冻-电子显微镜(cryo-EM)等尖端应用的激励,它需要从一组异地美食家的潜伏动作和规模为$gma$的添加性噪声中反复测量其图像,从而了解一个未知信号。尽管人们对此模型的估算率有极大的兴趣,但直到最近才出现了一个清晰的了解该模型估算率的图象,特别是在高新制度$\sigma \gg 1美元的应用中,这在应用中具有高度相关性。最近的调查显示,对于Fourier变换的具有充分支持力的某些信号来说,其订单的杂质复杂性为$\sigma_6美元,这与常规模型中出现的传统的$sgma_2美元相鲜明相反。在实践中,这些结果往往令人无法接受地大,促使对可实现更高样本复杂性的MRA模型的变异性进行调查。在本文件中,显示,即使在古典的MSA模型模型模型模型模型中,我们探索并探索了MRA模型模型模型与两个模型的精确性分析问题的链接。

0
下载
关闭预览

相关内容

Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月23日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
5+阅读 · 2020年8月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员