Ordinary differential equation (ODE) is widely used in modeling biological and physical processes in science. In this article, we propose a new reproducing kernel-based approach for estimation and inference of ODE given noisy observations. We do not assume the functional forms in ODE to be known, or restrict them to be linear or additive, and we allow pairwise interactions. We perform sparse estimation to select individual functionals, and construct confidence intervals for the estimated signal trajectories. We establish the estimation optimality and selection consistency of kernel ODE under both the low-dimensional and high-dimensional settings, where the number of unknown functionals can be smaller or larger than the sample size. Our proposal builds upon the smoothing spline analysis of variance (SS-ANOVA) framework, but tackles several important problems that are not yet fully addressed, and thus extends the scope of existing SS-ANOVA too. We demonstrate the efficacy of our method through numerous ODE examples.
翻译:普通差异方程式 (ODE) 被广泛用于科学的生物和物理过程建模。 在本条中, 我们提出一种新的复制内核法, 用于估计和推断ODE 的内核值。 我们不认为ODE 的功能形式为已知的, 或将其限制为线性或添加性, 我们允许双向互动。 我们为选择单个功能进行少许估计, 为估计的信号轨迹建立信任间隔。 我们建立了低维和高维环境下内核的估算最佳性和选择一致性, 其未知功能的数量可能小于或大于样本大小。 我们的建议建立在对差异进行平滑的样板分析( SS- ANOVA) 框架的基础上, 但解决了几个尚未充分解决的重要问题, 从而也扩大了现有的SS- ANVA 的范围。 我们通过多个 ODE 示例展示了我们的方法的有效性 。