It is crucially important to estimate unknown parameters in earth system models by integrating observation and numerical simulation. For many applications in earth system sciences, the optimization method which allows parameters to temporally change is required. Here I present an efficient and practical method to estimate the time-varying parameters of relatively low dimensional models. I propose combining offline batch optimization and online data assimilation. In the newly proposed method, called Hybrid Offline Online Parameter Estimation with Particle Filtering (HOOPE-PF), I constrain the estimated model parameters in sequential data assimilation to the result of offline batch optimization in which the posterior distribution of model parameters is obtained by comparing the simulated and observed climatology. The HOOPE-PF outperforms the original sampling-importance-resampling particle filter in the synthetic experiment with the toy model and the real-data experiment with the conceptual hydrological model. The advantage of HOOPE-PF is that the performance of the online data assimilation is not greatly affected by the hyperparameter of ensemble data assimilation which contributes to inflating the ensemble variance of estimated parameters.


翻译:至关重要的是,通过综合观察和数字模拟来估计地球系统模型中未知的参数。对于地球系统科学的许多应用来说,需要一种允许时间变化参数的优化方法。这里我提出了一个有效而实用的方法来估计相对低维模型的时间变化参数。我提议将离线批量优化和在线数据同化结合起来。在新提议的方法中,即所谓的混合离线在线参数与粒子过滤法(HOOPE-PF)中,我将连续数据同化的估计模型参数与离线批量优化的结果加以限制,通过比较模拟和观测的气候学获得模型参数的后端分布。HOOPE-PF在合成实验中超越了最初的取样-进口粒子过滤法,在概念水文模型中,实际数据实验也超越了该模型。HOOPE-PF的优点是,在线数据同化的性能不会受到高比准数据同化的仪的极大影响,该模型有助于使估计参数的多位变。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
211+阅读 · 2020年1月13日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月21日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员