We fully characterize the nonasymptotic minimax separation rate for sparse signal detection in the Gaussian sequence model with $p$ equicorrelated observations, generalizing a result of Collier, Comminges, and Tsybakov. As a consequence of the rate characterization, we find that strong correlation is a blessing, moderate correlation is a curse, and weak correlation is irrelevant. Moreover, the threshold correlation level yielding a blessing exhibits phase transitions at the $\sqrt{p}$ and $p-\sqrt{p}$ sparsity levels. We also establish the emergence of new phase transitions in the minimax separation rate with a subtle dependence on the correlation level. Additionally, we study group structured correlations and derive the minimax separation rate in a model including multiple random effects. The group structure turns out to fundamentally change the detection problem from the equicorrelated case and different phenomena appear in the separation rate.


翻译:在高山序列模型中,我们用美元等值相关观测,将高山测序模型中稀少信号探测的非悬浮微型离散率完全定性为美元等值,将Collier、Comminges和Tsybakov的结果普遍化。由于比率定性的结果,我们发现强烈的关联是一种祝福,中度关联是一种诅咒,薄弱的关联关系与此无关。此外,由于临界值的临界值水平导致福证阶段转换为$sqrt{p}$和$p-sqrt{p}美元。我们还建立了微型离散率新阶段过渡的出现,对相关水平的细微依赖。此外,我们研究小组构建了关联性,并在模型中得出了微型离散率,包括多重随机效应。该组结构从根本上改变了与精度有关案例和分离率不同现象的探测问题。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
已删除
将门创投
18+阅读 · 2019年2月18日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月22日
Arxiv
0+阅读 · 2021年12月21日
Arxiv
0+阅读 · 2021年12月20日
Arxiv
0+阅读 · 2021年12月17日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
已删除
将门创投
18+阅读 · 2019年2月18日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员