A Bayes factor is proposed for testing whether the effect of a key predictor variable on the dependent variable is linear or nonlinear, possibly while controlling for certain covariates. The test can be used (i) when one is interested in quantifying the relative evidence in the data of a linear versus a nonlinear relationship and (ii) to quantify the evidence in the data in favor of a linear relationship (useful when building linear models based on transformed variables). Under the nonlinear model, a Gaussian process prior is employed using a parameterization similar to Zellner's $g$ prior resulting in a scale-invariant test. Moreover a Bayes factor is proposed for one-sided testing of whether the nonlinear effect is consistently positive, consistently negative, or neither. Applications are provides from various fields including social network research and education.
翻译:为测试关键预测变量对依赖变量的影响是否线性或非线性,可能同时控制某些共变量。可以使用贝亚系数:(一) 当人们有兴趣量化线性和非线性关系数据中的相对证据时,可以使用测试;(二) 将数据中的证据量化,以有利于线性关系(在根据变异建立线性模型时有用);在非线性模型下,使用前高西亚进程,使用类似于Zellner以前美元参数的参数,从而进行规模性反差测试。此外,还提议对非线性效应是否一贯呈正数、一贯负数或两者均非单向测试采用一个贝亚系数。应用来自多个领域,包括社会网络研究和教育。