We propose a doubly robust approach to characterizing treatment effect heterogeneity in observational studies. We utilize posterior distributions for both the propensity score and outcome regression models to provide valid inference on the conditional average treatment effect even when high-dimensional or nonparametric models are used. We show that our approach leads to conservative inference in finite samples or under model misspecification, and provides a consistent variance estimator when both models are correctly specified. In simulations, we illustrate the utility of these results in difficult settings such as high-dimensional covariate spaces or highly flexible models for the propensity score and outcome regression. Lastly, we analyze environmental exposure data from NHANES to identify how the effects of these exposures vary by subject-level characteristics.
翻译:我们提议在观察研究中采用双重的稳健方法来说明治疗效果的异质性。我们利用倾向性评分和结果回归模型的后方分布法,就有条件平均治疗效果提供有效的推论,即使在使用高维或非参数模型时也是如此。我们表明,我们的方法导致有限样本中的保守推论,或根据模型的偏差进行保守推论,并在两种模型得到正确说明时提供一致的差异估计。在模拟中,我们说明了这些结果在高维共变空间或非常灵活的模型等困难环境中的效用,以利偏差得分和结果回归。最后,我们分析了NHANES的环境暴露数据,以确定这些暴露的影响如何因主题特性而不同。