股票预测是量化投资中最为关键的任务。近年来,深度神经网络因其强大的表征学习能力和非线性建模能力,逐渐成为股票预测的主流方法。现有的预测方法均假设股票数据符合独立同分布(IID)且采用单一模型有监督地对股票数据建模。但实际上,股票数据通常会包含多种不同甚至对立的分布(Non-IID),比如动量(历史收益率高的股票未来收益率会高)和反转(历史收益率低的股票未来收益率会高)这两种分布形式同时存在于股票数据中,但是已有的模型并不具备同时学习股票数据中多种分布的能力。
因此,微软亚洲研究院的研究员们提出了 Temporal Routing Adaptor (TRA),来赋予已有模型学习多种分布的能力。具体而言,TRA 在给定骨干模型的基础上,引入了一组 Predictors 来建模不同分布,和一个 Router 来根据样本的规律 p(y_t│X_t) 将其分配到所属的 Predictor 上进行训练和推理。为了保证 Router 能够预测出样本的规律,研究员们设计并利用了两种与 p(y_t│X_t) 关联的信息作为其输入:1) 利用骨干模型的隐层来表征 p(y ̂_t |X_t),2) 利用Predictor的历史预测偏差来表征 p(y_(<t)│X_(<t))。实验表明,这两种信息对 Router 有能力预测出样本规律起到了重要作用。